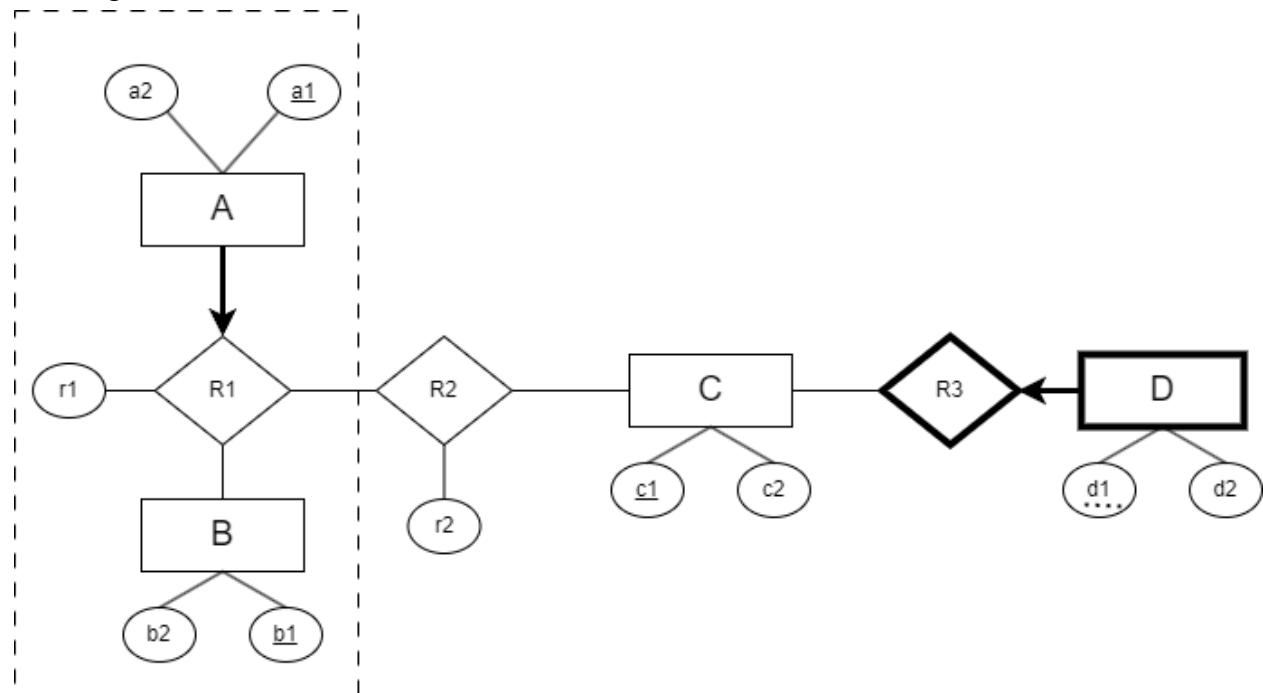
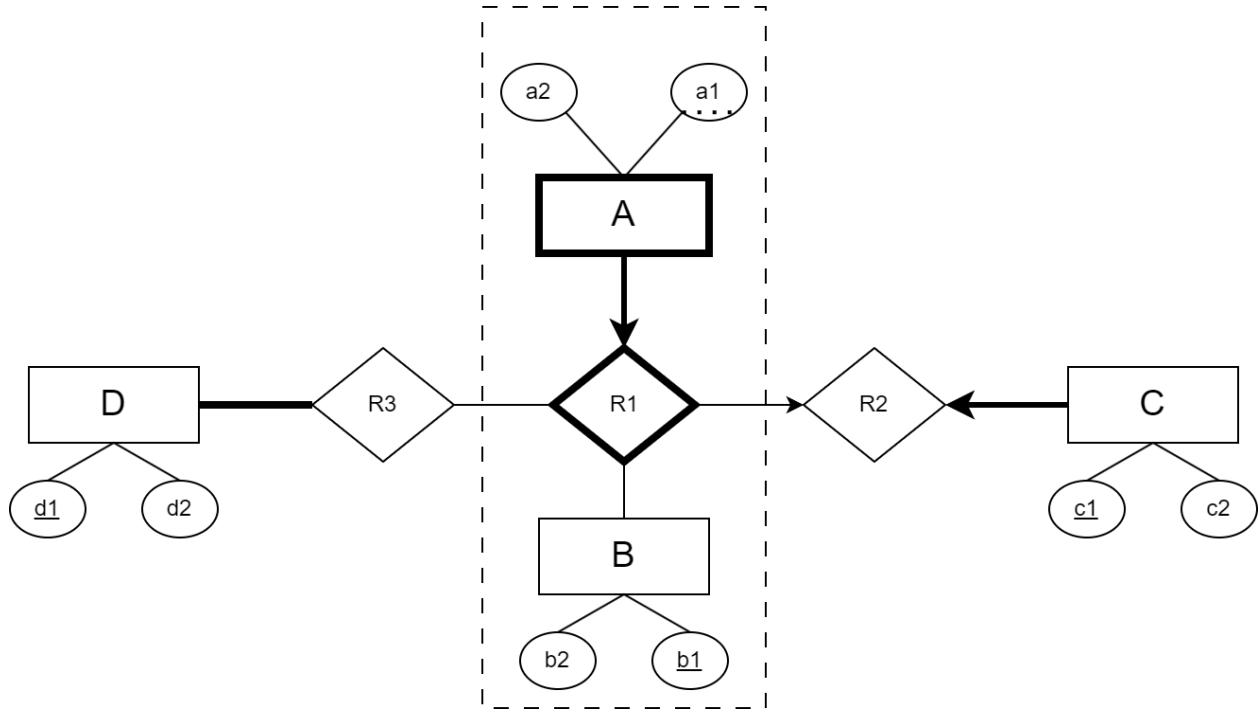


Extra exercises 1 SQL and Relational Algebra


Question 1: Every superkey is a candidate key.

- A) True
- B) False

Question 2: Every candidate key is a superkey.


- A) True
- B) False

Question 3: Given the provided Entity-Relationship (ER) diagram, which of the options represents the most suitable schema for designing the Relational Model based on the ER diagram?

- A) $AR1(a_1, a_2, r_1, b_1, b_2)$, $B(b_1, b_2)$, $R2(a_1, a_2, r_2, c_1)$, $C(c_1, c_2)$, $DR3(c_1, d_1, d_2)$
- B) $A(a_1, a_2)$, $B(b_1, b_2)$, $C(c_1, c_2)$, $DR3(c_1, d_1, d_2)$, $R1(a_1, b_1, r_1)$, $R2(c_1, b_1, a_1, r_2)$
- C) $AR1B(a_1, a_2, r_1, b_1, b_2)$, $R2(a_1, a_2, r_2, c_1)$, $C(c_1, c_2)$, $DR3(c_1, d_1, d_2)$
- D) $A(a_1, a_2)$, $B(b_1, b_2)$, $C(c_1, c_2)$, $D(d_1, d_2)$, $R1(a_1, b_1, r_1)$, $R2(c_1, b_1, a_1, r_2)$, $R3(c_1, d_1)$

Question 4: Examine the following ER diagram and its subsequent SQL representation (all data types are integers):

- CREATE TABLE D (

 d1 integer,

 d2 integer,

 primary key (d1));
- CREATE TABLE B (

 b1 integer,

 b2 integer,

 primary key (b1));
- CREATE TABLE CR2 (

 c1 integer,

 c2 integer,

 a1 integer NOT NULL,

 b1 integer NOT NULL,

 primary key (c1),

 foreign key (a1, b1) REFERENCES AR1(a1, b1));
- CREATE TABLE R3 (

 d1 integer,

 a1 integer,

```
b1 integer,  
primary key (a1, b1, d1),  
foreign key (a1, b1) REFERENCES AR1(a1, b1),  
foreign key (d1) REFERENCES D);
```

Which of the following represents an appropriate SQL code for creating the AR1 table?

- A) CREATE TABLE AR1(
 a1 integer,
 b1 integer,
 a2 integer,
 primary key (a1, b1),
 foreign key(b1) REFERENCES B ON DELETE CASCADE);
- B) CREATE TABLE AR1(
 a1 integer,
 b1 integer,
 a2 integer,
 primary key (a1, b1),
 foreign key(b1) REFERENCES B ON DELETE NO ACTION);
- C) CREATE TABLE AR1(
 a1 integer,
 b1 integer,
 a2 integer,
 primary key (a1),
 foreign key(b1) REFERENCES B ON DELETE NO ACTION);
- D) CREATE TABLE AR1(
 a1 integer,
 b1 integer,
 a2 integer,
 primary key (a1),
 foreign key(b1) REFERENCES B ON DELETE CASCADE);

Questions 5, and 6: Consider the following database schema for a movies website:

- Films(filmId: integer, title: string, year: integer, length: integer)

- Genres(genreId: integer, genreName: string)
- People(personId: integer, name: string, age: integer, gender: string, nationality: string)
- FilmsActors(filmid: integer, personId: integer)
- FilmsDirectors(filmid: integer, personId: integer)
- FilmsGenres(filmid: integer, genreId: integer)

Question 5: Which of the options results from the following relational algebra expression?

$$L \leftarrow \pi_{name}((\sigma_{genreName="Action"}(FilmsGenres \bowtie Genres)) \bowtie People \bowtie FilmsDirectors)$$

$$\pi_{name}(People \bowtie FilmsDirectors) - L$$

- A) Directors' names who directed at least one film in the genre "Action".
- B) Directors' names who directed films only in the genre "Action".
- C) Directors' names who did not direct any films in the genre "Action".
- D) People who did not play any films in the genre "Action".

Question 6: What is the optimized version of the following relational algebra expression?

$$\pi_{name}(\pi_{name,age}(\sigma_{age>50 \vee age<20}(\sigma_{gender='male'}(People))))$$

- A) $\pi_{age}(\sigma_{age>50 \vee age<20 \vee gender='male'}(People))$
- B) $\pi_{age}(\sigma_{gender='male' \wedge (age>50 \vee age<20)}(People))$
- C) $\pi_{name}(\sigma_{gender='male' \wedge (age>50 \vee age<20)}(People))$
- D) $\pi_{name}(\sigma_{gender='male' \vee (age>50 \vee age<20)}(People))$

Questions 7, 8, 9, 10 and 11: Consider the following relations A(a1, a2, a3), B(b1, b2, b3) and C(a1, c1, c2, c3) and the corresponding tables:

A:

<u>a1</u>	a2	a3
1	S	F
2	Q	H
3	Y	H
4	U	J

B:

<u>b1</u>	b2	b3
1	Q	F
3	S	G
5	Y	H
7	U	J
9	K	K

C:

<u>a1</u>	<u>c1</u>	c2	c3
2	1	A	G
3	1	B	H
4	2	C	I
6	3	D	J
7	4	E	K
8	5	F	L

Question 7: What is the number of tuples obtained by applying Cross-product over A and C?

Question 8: What is the number of tuples obtained by applying $A \bowtie B$ (with $a1 = b1$ as the join condition)?

Question 9: What is the number of tuples obtained by joining the result of the previous questions with C? $(A \bowtie B) \bowtie C$ (with $A.a1 = C.a1$ as the join condition)

Question 10: The number of tuples obtained by applying $(A \bowtie B) \bowtie C$ differs from the number obtained by applying $(A \bowtie C) \bowtie B$.

- A) True
- B) False

Extra exercises 1 SQL and Relational Algebra Solutions

Answer 1: B

Answer 2: A

Answer 3: A

Answer 4: A

Answer 5: C

Answer 6: C

Answer 7: 24

Answer 8: 2

Answer 9: 1

Answer 10: B